21 ноября 2024 г., Четверг
РЕГИСТРАЦИЯ
НОВОСТИ
АНАЛИТИКА
ИНСТРУМЕНТЫ РЫНКА
СПРАВОЧНИК
СЕЛЬХОЗТЕХНИКА
УЧАСТНИКАМ
СЕРВИС
ПОИСК ПО САЙТУ
Введите слово или фразу:
Искать в разделе:


Индивидуальная биогазовая установка

29 октября 2012 15:46

Индивидуальная биогазовая установка, биогаз, биометан, биотопливо.

Осадчий Г.Б., инженер

Технологии, использования отходов растениеводства и животноводства для производства биогаза (биометана) описаны подробно [1, 2, 3, 4, 5, 6]. Эти технологии более всего подходят для удаленных районов с низкой плотностью населения, энергообеспечение которого связано с высокими затратами по доставке органического топлива и передаче электроэнергии.

Кроме этих технологий, можно продолжать использовать в качестве топлива коровий навоз в высушенном виде, солому и стручки семян для обогрева домов. В настоящее время они также относятся к одному из видов возобновляемых топливно-энергетических ресурсов — «другая биомасса».

Однако при естественной сушке навоза в атмосферу выделяется много биометана и СО2, что приводит к загрязнению окружающей среды и нерациональному использованию отходов. Так, в США в настоящее время на отходы животноводства приходится около 8 % связанных с деятельностью человека выбросов биометана. Поэтому в США для хранения животных отходов часто используются крытые пруды. При этом для сбора биогаза, выделяющегося из отходов (как правило, при психофильном режиме) применяется так называемая плавающая крыша, вершина которой снабжена клапаном и системой труб для отвода биогаза потребителю. Особенности этой биогазовой технологии подробно описаны в работе [7].

Развитие микробиологической отрасли по анаэробному превращению органических веществ это актуальная задача сегодняшнего дня. В зависимости от конкретной обстановки на первый план может выходить прямое получение энергии, экономия энергии в процессе очистки органических стоков, получение исходных восстановленных веществ из возобновляемых источников энергии (ВИЭ), получение энергии в виде моторного топлива, удобрений длительного действия.

Использование энергии из возобновляемых источников представляется возможностью решения ряда глобальных и региональных проблем, вызванных развитием энергетики, основанной на ископаемом топливе. Современное использование биомассы можно считать использованием возобновляемых ресурсов только в том случае, если система обеспечивает соответствующее возрастание урожая.

Определенные надежды часто возлагают на фотосинтез водорослей, которые могут расти значительно быстрее, чем происходит наземная вегетация. Однако для культивирования водорослей требуется концентрация углекислоты и создание установок, сопоставимых по сложности с гидропоникой. Поскольку последняя дает пищевую продукцию, она, бесспорно, будет иметь приоритет. Вообще в альтернативе: пища или топливо приоритет должен быть отдан пище. Наглядным примером служило развитие гидролизной промышленности в СССР, которая использовала наиболее дешевую и доступную биомассу — лесные отходы.

Традиционная энергетика, основанная на газе, нефти, угле, несомненно приводит к исчерпыванию резервуара О2 быстрее, чем «зеленое топливо», одновременно производящее кислород, но она не требует таких огромных площадей и главное не конкурирует с производством пищи.

Тем не менее, анализ возможностей «зеленого топлива» как основного источника энергии приводит к пессимистическим выводам.

Оптимистический прогноз возникает лишь при рассмотрении возможностей анаэробного метаногенеза органического сырья (отходов) как многоцелевого процесса. Этот процесс, резко уменьшающий расход энергии при переработке, осуществляется сообществом микроорганизмов, которые способны из самых разнообразных органических веществ (кроме лигнина) образовывать смесь биометана с углекислотой, получившую название «биогаз».

Общие схемы переработки биомассы представлены в монографии [8].

Как известно, режимы биогазовых технологий в зависимости от температуры подразделяются на психофильный (15 – 20 ⁰С), мезофильный (30 – 40 ⁰С) и термофильный (52 – 56 ⁰С). Анаэробная переработка органических веществ, в биогазовых реакторах представляет собой сложный процесс. Он осуществляется в три основных этапа при участии целого ряда микроорганизмов. Первоначально группа микроорганизмов преобразует органические вещества в форму, которую вторая группа микроорганизмов использует для выработки органических кислот. А затем биометан-производящие анаэробные бактерии разлагают эти кислоты и завершают процесс переработки.

Анаэробные бактерии способны «переваривать» органический материал в отсутствии кислорода, в отличие от аэробного разложения при компостировании, которое требует много кислорода. Более сухой навоз, сложенный в кучи, под действием микроорганизмов-аэробов понемногу разлагается, и разогревается в процессе разложения до 50 – 70 ⁰С.

Для увеличения концентрации метанобразующих бактерий в реакторе и интенсификации образования биометана используют способность микроорганизмов хорошо адсорбироваться на поверхностях твердого тела. В качестве иммобилизующих поверхностей используют стекловолокно, капроновые нитки, активированный уголь и другие материалы, причем выход биогаза увеличивается в 2 раза [9].

Также влияет на интенсивность метаногенеза температура.

Теоретические и практические исследования в области биологической переработки растительной биомассы, отходов животноводства и т.д. в биогаз показали, что активность бактерий и соответственно объем биогаза, получаемого в результате переработки, при прочих равных условиях напрямую зависит от температуры. Чем выше температура, тем быстрее идет процесс переработки, больше вырабатывается биогаза, меньше остается бактериальных и вирусных болезнетворных организмов. Так, при температуре от 52 до 56 ⁰С выработка биогаза идет в 1,5 – 3 раза быстрее, чем при 30 – 40 ⁰С, и достигается эффективное обеззараживание получаемых удобрений (активность бактерий и, следовательно, выработка биогаза существенно падает в интервале температур 51,7 и 39,4 ⁰С, и в меньшей степени от 35 до 0 ⁰С).

Сегодня интенсивность метаногенерации является одним из основных показателей эффективности технологии получения биогаза, и её повышение – приоритетная задача научных исследований и разработок. Также этот процесс очень чувствителен к таким факторам, как изменение в исходных материалах и к колебаниям температуры — метановые бактерии сравнительно легко выдерживают температурные колебания среды в биореакторе только в пределах 3 – 4 ⁰С/сутки.

Устойчивый процесс метаногенеза может быть осуществлен лишь при равномерной подаче однородного субстрата. В этом случае накапливается микрофлора, осуществляющая основной маршрут, и скорость процесса возрастает. Какие-либо перебои или изменения в составе субстрата, изменения физико-химического режима приводят к тем более длительной задержке, чем интенсивнее шел процесс до этого. Таким образом, не может быть универсальной установки для переработки органического сырья в биометан. Действующим инструментом является не сооружение, а микробное сообщество в нем. Поэтому рекордные возможности метаногенеза обычно бывают на откормочных пунктах, там, где длительная стабилизация состава навоза.

Недостатком подавляющего большинства эксплуатируемых в настоящее время биогазовых установок различных типов является то, что у них поддержание термофильного режима переработки отходов в биогаз обеспечивается за счет недопустимо высокого расхода различных высоколиквидных топлив (за счет сжигания части вырабатываемого биометана). А при эксплуатации их в России зимой для них требуются изолированные помещения (укрытия), а значит и дополнительный расход энергии на поддержание в этих помещениях микроклимата. Для сравнения. Потребление теплоты на собственные нужды котельной составляет: при сжигании газового топлива — 2,3 – 2,4, твердого — 2,4 – 4,9, жидкого — 3,5 – 9,7 %.

Возвращаясь к схемам возможных микробиологических путей переработки органических веществ в топливо, следует отметить, что только метаногенез имеет обратный маршрут к биомассе. Сброженный осадок метантенка представляет удобрение длительного действия, которое возвращает питательные элементы на поля и, следовательно, экономит энергию, затрачиваемую на удобрения. Обычным возражением против метаногенеза в сельском хозяйстве служит ссылка на необходимость использования навоза как органического удобрения. Эта ссылка не совсем точна, поскольку при метаногенезе происходит сокращение на ⅔ балластных органических веществ, отходящих в виде биометана и углекислоты, и соответственном сокращении транспортных расходов на вывоз удобрений на поля. Особенно выгоден термофильный вариант метаногенеза, который выполняет наиболее жесткие санитарные требования. Недостатком метаногенеза является его высокая стоимость как метода очистки органических стоков по сравнению с аэробной очисткой.

Таким образом, при самом скептическом отношении к возможностям «зеленого топлива», развитие анаэробных методов переработки органических отходов представляется беспроигрышным подходом.

Если биогазовое сырье высушить и сжечь, то теплота его сгорания составит примерно 16 МДж/кг (около 10 % потенциальной теплоты сгорания теряется в процессе сбраживания). Таким образом, КПД конверсии составляет 90 %. В то же время, материал с повышенной влажностью, будучи введен в процесс сбраживания, дает высококачественное с хорошо управляемым горением газообразное топливо, тогда как одно лишь удаление 95 % влаги из навоза требует до 40 МДж теплоты на 1 кг сухого остатка [10].

Поиски оптимальной архитектуры комбинированных биогазовых установок, способствующей уменьшению использования биометана на собственные технологические нужды при его производстве находит все более широкое отражение в трудах исследователей [11]. Так использование оборудования энергетики ВИЭ — ветроустановок, солнечных коллекторов, для поддержания рабочей температуры в биореакторе позволяет практически в 1,5 – 2 раза повысить КПД биогазовой системы. Это особенно актуально, если очищенный от СО2 биометан затем использовать в качестве моторного топлива для автотранспорта, или закачивать в существующие сети природного газа.

Список литературы

1 Сидыганов Ю.Н. Особенности обеспечения биогазом АПК Республики Марий Эл / Ю.Н. Сидыганов, Д.Н. Шамшуров // Механизация и электрификация сельского хозяйства. 2006. № 6. С. 2 – 4.

2 Ракитова О. Государство и биоэнергетика / О. Ракитова // Альтернативная энергетика. 2007. № 5-6. С. 5 – 10.

3 Логвинов И.И. Развитие биогазовой отрасли в Омской области / И.И. Логвинов // Инновации Технологии Решения. 2005. № 5. С. 22 – 23.

5 Чумаков А. Биомасса отходов — энергетический резерв поселений / А. Чумаков, В. Ильин // Альтернативная энергетика. 2007. № 4. С. 12 – 15.

5 Панцхава Е.С. Биоэнергетика в агропромышленном комплексе России / Е.С. Панцхава, М.М. Шипилов // Энергия Экономика Техника Экология.– 2007.– № 8.– С. 30 – 34.

6 Горбунов А.В. Анаэробные дигесторы и альтернативная энергетика / А.В. Горбунов // Оборудование Разработки Технологии. 2009. № 10 – 12. С. 16 – 20.

7 Развитие возобновляемых источников энергии в России: возможности и практика (на примере Камчатской области) GREENPEACE, Москва, 2006, 89 с.

8 Осадчий Г.Б. Солнечная энергия, её производные и технологии их использования (Введение в энергетику ВИЭ) / Г.Б. Осадчий. Омск: ИПК Макшеевой Е.А., 2010. 572 с.

9 Усаковский В.М. Возобновляемые источники энергии / В.М. Усаковский. М.: Россельхозиздат, 1986. 126 с.

10Твайдел.Дж. Возобновляемые источники энергии / Дж. Твайдел, А. Уэйр. М.: Энергоатомиздат, 1990. 392 с.

11 Селин В.В. К вопросу о разработке концепции использования биотоплива в энергобалансе Калининградской области / В.В. Селин // Электрика. 2006. № 8. С. 9 – 12.

12 Патент.2272392 РФ, МКИ/ А 01 С 3/02, Биоэнергетическая установка / А.В. Семенов: Б. И. 27. 03. 2006, Бюл. № 9.

13 Методические вопросы развития энергетики сельских районов / Х.З. Барабанер, В.М. Никитин, Т.И. Клокова и др. Иркутск, СЭИ, 1989. 260 с.

14 Горбунов А.В. Анаэробные дигесторы и альтернативная энергетика / А.В. Горбунов // Оборудование Разработки Технологии. 2009. № 10 – 12. С. 16 – 20.

15 Баротфи И., Рафаи П. Энергосберегающий технологии и агрегаты на животноводческих фермах. М.: Агропромиздат, 1988 228 с.

16 Самойлов В. Альтернативная энергетика — вектор развития/ В. Самойлов // Энергосбережение в Сибири. 2010. № 1. С. 89 – 91.

Автор: Осадчий Геннадий Борисович, инженер, автор 140 изобретений СССР.

Тел дом. (3812) 60-50-84, моб. 8(962)0434819,

E-mail: genboosad@mail.ru

Для писем: 644053, Омск-53, ул. Магистральная, 60, кв.17.

Источник: Зерно Он-Лайн
Телеграм-канал: https://t.me/zolnews
Читайте новости рынка в нашем мобильном приложении  
Установите мобильное приложение Зерно Он-Лайн: